This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

A DIRECT ROUTE TO ORTHO-HYDROXY PHENYL DITHIOPHOSPHINIC ACIDS

Tilman Kraucha; Bernd Schweizera

^a Institut for Organic Chemistry, ETH Zürich, Zürich, Switzerland

To cite this Article Krauch, Tilman and Schweizer, Bernd(1988) 'A DIRECT ROUTE TO ORTHO-HYDROXY PHENYL DITHIOPHOSPHINIC ACIDS', Phosphorus, Sulfur, and Silicon and the Related Elements, 35: 1, 207 — 209

To link to this Article: DOI: 10.1080/03086648808079384 URL: http://dx.doi.org/10.1080/03086648808079384

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A DIRECT ROUTE TO ORTHO-HYDROXY PHENYL DITHIOPHOSPHINIC ACIDS

TILMAN KRAUCH* and BERND SCHWEIZER

Institut for Organic Chemistry, ETH Zürich, Universitatsstrasse 16, CH-8092 Zürich, Switzerland

(Received June 28, 1987)

Through a direct and selective deprotection of 1 (R—methyl) with boron tribromide substituted o-hydroxy-dithiophosphinic acid 1 was prepared under mild conditions in excellent yield.

In the course of our work to design enzyme models, 1,2 we had occasion to synthesize a model with the structure:

FIGURE 1

Compound 1 is a dithiophosphinic acid with a hydroxy group ortho to the dithiophosphinic acid function on one of the aromatic rings. Molecules with structures related to 1 have potential interest as ligands for metals and pesticides.

Attempts to synthesize 1 by routes based on a conversion of a phosphinic acid to a dithiophosphinic acid as a last step were unsuccessful. However, the methyl derivative (R = Me) of 1, 2-methoxyphenyl-4-methoxylphenyl-dithiophosphinic acid, could be obtained easily through the reaction of a Grignard reagent prepared from 2-bromo anisol and Lawesson-reagent³. This intermediate was found to be selectively demethylated by reaction with boron tribromide⁴ in 97% yield. After 15 seconds in methylene chloride at room temperature, followed by aqueous workup, only the methyl group on the ortho oxygen was removed.† Only after further reaction under the same reaction conditions for 8 hours was the second methyl group on the para oxygen also taken off.

H—NMR-spectra of the protected compound showed a remarkable chemical shift of the aromatic hydrogen ortho to the C—P bond, due to its fixed position above the other aromatic ring (ABCX; 8.45 ppm). With deprotection this signal shifts to 7.34 ppm, as the aromatic ring gains mobility. Crystal structure

[†] Analytical Data; m.p. 169°C; ¹H—NMR: (CDCl₃, ppm) 2.5 (broad, 1H, SH); 3.86 (3H, s, -OCH₃); 6.9–7.9 (8H, m, aromatic H); 9.1 (1 H, broad, OH); MS: (m/e)M⁺, 296(65.3), 263(100.0), 155(51.3). EA: C₁₃H₁₃O₂PS₂ (calc.: C, 52.69; H, 4.42; found: C, 52.37; H, 4.46.)

confirmed selective demethylation and showed that the S hydrogen is oriented towards the free hydroxy group.‡

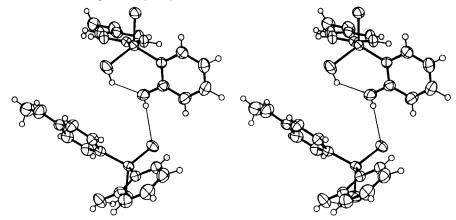


FIGURE 2 ORTEP [7] stereo drawing of two molecules of 1 showing the inter- and intramolecular hydrogen bonds. The vibration ellipsoids are at the 50% probability level.

The mechanistic origin of the surprisingly selective deprotection reaction is uncertain. A plausible first step involves the replacement of bromide of boron tribromide by the thiol function. Thereby the reagent is bonded to the region where further reaction occurs. Models based on known bond lengths in analogous compounds⁸ and the data given by the crystal structure suggest that this intermediate is sterically well suited for reaction.

We examined other Lewis acids (aluminium trichloride, mercury dibromide and diiodide, zinc dichloride, dibromide and diiodide, cadmium dichloride) and also the reaction of boron tribromide with the sulfur analog in the 2 position. In no case was a selective demethylation observed. The simplest hypothesis is that altering the steric dimensions of groups in the cyclic complex makes methyl replacement much slower.

ACKNOWLEDGEMENT

We thank S. A. Benner in whose laboratories this work was done and the Fond der chemischen Industrie-Deutschland for financial support.

REFERENCES

- 1. S. A. Benner, Tetrahedron Lett., 1981, 1851.
- 2. S. A. Benner, ibid., 1981, 1855.

Crystal data: $C_{13}H_{13}O_2PS_2$, $M_r = 296.35$ g mol⁻¹, monoclinic space group $P2_1/a$, a = 12.484, b = 6.863, c = 16.957 Å, $\beta = 102.70^{\circ}$, $d_x = 1.39$ g cm⁻³, Z = 4. 3416 independent intensities were measured at 20°C on an Enraf Nonius CAD-4 four circle diffractometer (Graphite monochromator, MoK_{\alpha} radiation, $\lambda = 0.71069$ Å) with $\theta < 28^{\circ}$ of which 2194 with l > 3 $\sigma(l)$ were considered significant. The structure was solved by direct methods with SHELX86 [5] and refined by full matrix least squares with SHELX76 [6]. The non-H atoms were refined anisotropically, the hydrogens isotropically. The refinement converged with R = 0.034. Atomic coordinates and atomic displacement parameters have been deposited with the Cambridge Crystallographic Data Centre, Lensfield Road, Cambridge, England.

[‡] Crystal structure determination.

- 3. K. Diemert, W. Kuchen, Phosphorous and Sulfur, 3, 131 (1977).
- 4. D. E. West et al., Tetrahedron, 1968, 2289.
- SHELX 86: G. M. Sheldrick, C. Kruger, R. Goddard, Crystallographic Computing 3, Oxford University Press, 1985, 175-189.
- G. Sheldrick "Shelx '76. Program for Crystal Structure Determination"; University of Cambridge, England 1976.
- C. K. Johnson, ORTEP: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustration, Oak Ridge National Laboratory Report ORNL 3794, 1965.
- 8. E. L. Muetterties, The Chemistry of Boron and Its Compounds p. 651 J. Wiley & Sons NY (1967).